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Abstract

A viscoplastic model for class M (metal-like

behavior) materials is presented. One novel
feature of this model is its use of internal vari-

ables to change the stress exponent of creep

(where n _ 5) to that of'natural' creep (where

n = 3), in accordance with experimental ob-
servations. Another feature is the introduc-

tion of a coupling in the evolution equations
of the kinematic and isotropic internal vari-

ables, making thermal recovery of the kine-

matic variable implicit. These features enable
our viscoplastic model to reduce to that of

steady-state creep in closed form. In addition,
the hardening parameters associated with the

two internal state variables (one scalar-valued,

the other tensor-valued) are considered to be
functions of state, instead of being taken as
constant-valued. This feature enables each in-

ternal variable to represent a much wider spec-
trum of internal states for the material. We

apply our model to a LiF-22%CaF2 hypereu-
tectic salt, which is being considered as a ther-

mal energy storage material for space-based

solar dynamic power systems.

1 Introduction

The primary power supply for Space Station
Freedom will be photovoltaic panels (75 kW

total--phase I implementation). Under con-
sideration as an option, supplemental power

will be supplied by reflecting the Sun's energy

into two solar dynamic power modules (25 kW

each--phase II implementation) [1]. Within
the solar receiver of each power module will be

a network of working fluid tubes. This work-

ing fluid will transport thermal energy to heat

engines for electric power generation. Encas-

ing each working fluid tube will be a string
of canisters. The basic function of these can-

isters is to store heat when they are exposed

to sunlight, and then release this heat when

the vehicle is in eclipse. Typically, this en-

ergy storage-release cycle is attained through

a thaw-freeze cycle of a special material con-
tained within the canisters.

The attractive thermophysical properties of

fluoride salts make them potential candidates

for use as thermal energy storage materials in

space-based solar dynamic systems [2]. Cur-

rently, the LiF-21mol%CaF_ eutectic mixture

is being considered for this purpose. A major

problem that arises with the use of fluoride
salts is the very large volume expansions that



theyundergouponmelting(~ 30%);plus,the

fairly large volume expansions that they incur
upon heating from room temperature to melt-

ing (,_ 5%). These volume expansions can lead

to a stress buildup on the walls of a canister,

especially when pockets of molten salt are en-

trapped between the containment vessel and

unmelted salt. As a result, localized distor-
tion or rupture of a canister could occur if the

unmelted salt does not deform easily to acco-

modate this volume change.
This paper presents the development of a

viscoplastic model for a LiF-22mol%CaF2 hy-
pereutectic salt based upon the experimental

data of RAJ & WHITTENBERGER [3]. This vis-
coplastic model, and a similar one for the con-

tainment vessel (IIaynes Alloy 188, a class A--

alloy behavior, i.e. dynamic strain aging--

material), will be used in future stress analyses

of a canister to address the possiblity of local-

ized distortion or rupture; thereby, assessing
the durability of these canisters.

2 Stress-Strain Relations

Stress (rij is assumed to be related to infinites-

imal strain eij through the isotropic constitu-
tive equations

v = 0 (1)

aii= 3x(eii - a AT 6ii) (2)

with shear p and bulk t¢ elastic moduli, where

S_j = _rij - o'_k6ij/3

eij = eij - ekk6i.i /3

denote the deviatoric stress and strain. Equa-
tion 1 charactcrizes the deviatoric stress re-

sponse, while Eqn. 2 characterizes the hydro-

static stress response. The inelastic ePj and
thermal a AT 6ij strains are eigenstrains that

represent deviations from deviatoric and hy-

drostatic elastic behaviors, respectively. The

constant a is the mean coefficient of thermal

expansion, while AT -- T - To represents a

difference between the current temperature T

and some reference temperature To. Herein, T

represents an absolute temperature in degrees

Kelvin. The quantity gij is the Kronecker
delta. Repeated Latin indices are summed
over from 1 to 3 in the usual manner.

Young's modulus E and Poisson's ratio v

are often the elastic moduli that are experi-
mentally determined. The expressions

E
p --

2(1 + v)

E
K --

3(1 - 2v)

define their interdependence, since only two
elastic moduli are independent for isotropic
materials.

3 Viscoplastic Theory

The mathematical structure for the theory

of viscoplasticity considered in this paper

is a special case of a much more general

structure that was discussed by FREED

CItABOCHE [4]. The theory considered ad-

mits two internal state variables; they are:

i) the (scalar-valued) yield strength Y >_ 0,

and i 0 the (deviatoric tensor-valued) back

stress Bij. The yield strength accounts for

isotropic hardening effects, while the back

stress accounts for kinematic (flow-induced
anisotropic) hardening effects. These internal

variables are considered to evolve phenomeno-

logically through competitive processes asso-

ciated with strain hardening, strain-induced
dynamic recovery, and time-induced thermal

recovery. The choice of a yield strength (over

that of a drag strength) for the isotropic vari-
able is consistent with results from an earlier

study done by the authors [5].



The flow equation for inelastic strain is given

by

_ij =

with the effective stress

Eij= Sij - Bij

establishing the direction of inelastic strain

rate. A dot placed over a variable denotes its

time rate-of-change.

The norms (or magnitudes) of this theory
are defined as

where hj is any deviatoric strain-like tensor,

viz. _iij, and where Jij is any deviatoric stress-
like tensor, viz. Sij, Bij and Eij. These norms
are of the yon Mises type, where the coeffi-
cients are chosen to scale the theory for ten-
sion.

The evolution equations characterizing the

internal state of the material are given by

and

? = h(ll_Pll - dtl_Pll Y - r) (5)

where H > 0 and h > 0 are the strain hard-

ening parameters, D > 0 and d >__0 are the

dynamic recovery parameters, and R > 0 and

r > 0 are the thermal recovery parameters. No
parameter can be negative-valued and satisfy

the thermodynamics, in general.

Defining functional forms for the six param-
eters H, h, D, d, R and v, along with a ki-

netic equation for IlgPl[, results in a specific

viscoplastic model. Such a model is presented
in the next section for class M materials.

4 Viscoplastic Model

Material functions that characterize a vis-

coplastic model for class M materials are given
below. A discussion of these material func-

tions is presented in the following subsection.
Derivations of the material functions, where

noted, are presented in the Appendix.

A Zener type kinetic equation for the evolu-
tion of inelastic strain is considered, i.e.

II_Pll= 0z (6)

where d(T) > 0 acts as a thermal diffusiv-

ity, and Z(Sij, Bij, Y) >__0 is referred to as the
Zener parameter. 1 The ZENErt-HoLLOMON [6]

hypothesis assumes that the kinetic equation

can be represented as a product of two func-

tions t9 and Z; the first is dependent only

on temperature, while the latter is dependent

only on stress and the internal state.
For the thermal diffusivity, we will use the

relationship

Tt<_T<T,.
o = (7)

O<T<_Tt

which was derived by MILLER [7]. Here k is the

universal gas constant (k = 8.314 J/mol-K), Q

is the activation energy, Tm is the absolute

melting temperature, and Tt is the absolute

transition temperature. For the Zener param-

eter, we shall consider the relationship

Z : A sinh3 ((IIE_ - Y)) (8)

1 The preference of a temperature-dependent activa-

tion energy over a stress-dependent activation energy

is discussed in a companion paper by Fal_EI), RaJ &

WALKEa, which is also published in these conference

proceedings.



with frequency coefficient A and drag strength

K. The Maeauley bracket operator ([[_[[- Y)

has either a value of 0 whenever [[Z[[ _< Y
(defining the elastic domain), or a value of

[[E[[- Y whenever [[Z[[ > Y (defining the vis-

coplastic domain), with [[E[[ = Y establishing

the yield surface.

The three material parameters associated

with the evolution of back stress for this par-
ticular model are taken to be

H = (0.01+0.99¢m)E

D = ____y
bY

R = 0

(9)

where m and y are positive-valued material

constants, and where b and _ are functions of

state defined in Eqns. 11 and 12. The func-

tion for dynamic recovery D is derived in the

Appendix. Since R = 0, there is no thermal re-

covery term in the evolution equation for back
stress in this model.

The three material parameters associated

with the evolution of yield strength for this
particular model are taken to be

h = clsinh3-n(y-_)

b_
d-- c2-- (10)

Y

r = A0sinhn(_)

where C, cl, c2 and n are positive-valued ma-
terial constants. The function for thermal re-

covery r is derived in the Appendix. It is worth

noting that unlike the recovery parameters,

the functional form of a hardening parameter
cannot be determined a priori, but must be

postulated based upon experimental observa-
tions.

The fraction of applied stress which is at-

tributed to the 'back stress' under steady-state

B
Surface

Figure 1: Geometric representation of state

space.

conditions is determined to be

YK"-its (_'-_)] (11)b = 1 - y- T slnh inh n/3 Y

where the material constant y represents the

percentage of applied stress which is at-

tributed to the 'yield strength' under steady-
state conditions. The derivation of Eqn. 11 is

given in the Appendix.
A measure for the distance between the cur-

rent point Bij in stress space and its imaging

point :_I_/DIIEII on the bounding surface is
given by

(12)
where 0 < _ < 1. This relationship comes from

considerations of state-space geometry for our
model, as illustrated in Fig. 1. The cord be-
tween the current state of back stress and its



imagepoint of length2_/D is in the direc-
tion that the back stress evolves, which is the

viscoplastic analog to the kinematic evolution

in a two-surface MRoz [8] model for plastic-

ity. A value of _ = 0 implies that Bij is on the

bounding surface, and that Sij is either on this
surface or outside of it. A value of _ = 1 also

implies that Bij is on the bounding surface,

but now Sij is inside this surface, i.e. unload-

ing from a saturation state has just begun.

4.1 Discussion of the Model

In total, there are three temperature-

dependent material constants pertaining to

thermoelasticity, viz. a, _ and #, ten

temperature-independent material constants

pertaining to viscoplasticity, viz. A, C, Cl, c2,

K, m, n, Q, Tt and y, and one initial condi-
tion, viz. Yo. Of these ten viscoplastic con-

stants, five are determined from steady-state

creep data, viz. A, C, n, Q and Tt, while

the remaining five must be determined from

data involving transient behavior. By defini-

tion, Y0 = 0 in an annealled state. The ma-
terial constants for LiF-22%CaF2 used in the

analyses presented in this paper are listed in

Table 1. Data for the elastic constants [9] pre-
sented therein were correlated over the tem-

perature range of 300 to 950 K, with melting

occurring at 1042 K. There is danger in ex-

trapolating their values outside of this range,
especially for u whose expression is in direct

violation with physics for T < 150 K.

An important consequence of the viscoplas-

tic model presented above is that the Zener

parameter defined in Eqn. 8 reduces in closed

form to the Zener parameter associated with

GAROFALO'S [10] creep equation under steady

state conditions, i.e.

where the subscript 'ss' denotes steady state,

Constant Units

O_

MPa
12

A

C

106 K-1

S-1

MPa

Value

18 + 0.03T

52, 000 - 29T
0.65 - 0.001T

5 x 1015

27

cl MPa 50,000

C 2 -- 0

K MPa 8

m

TI

Q J/mol.
K

K
T_
Tt

y m

MPaY0

320,000

1042

85O

0.1

0

Table 1: Constants for LiF-22%CaF2.

and C is the power-law breakdown stress. The

capability of Zener's kinetic equation (6) to

correlate experimental creep data using the

relationships for t9 and Z,, given in Eqns. 7

and 13 is demonstrated in Fig. 2.

The hardening parameter H given in Eqn. 9

is similar in form and function to the tangent

modulus of the DAFALIAS-PoPov [11] two-

surface theory of plasticity. Both allow for a
smooth transition between elastic and inelas-

tic behavior. The exponent m characterizes

the strength of curvature in a typical hystere-

sis loop. Since there are no cyclic data avail-

able for LiF-22%CaF2, an assumed value for

m is given in Table 1.

As previously mentioned, there is no 'ex-

plicit' representation for the thermal recovery
of back stress in our model. But take note
that the surface which bounds the state of

back stress--characterized by D--is a func-

tion of the yield strength in Eqn. 9. Conse-

quently, since the yield strength thermally re-
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Figure 2: Steady-state kinetic response of
LiF-22%CaF2. Data are from RAJ _c WHIT-

TENSERCER[3].

covers, thermal recovery of the back stress is

'implicit'. Unfortunately, inelastic strain must

evolve in order for this implicit recovery to

take place. Even though this is not a physi-
cally accurate representation of thermal recov-

ery, it is a very useful approximation to it. It
is useful because it allows the effect of thermal

recovery to be modeled, while still enabling
our viscoplastic model to reduce to a steady-

state creep model (in particular, Garofalo's)

in closed form. This enables us to use creep

data directly for the purpose of characterizing
about half of our model's material constants--

a huge benefit.

In the domain of power-law creep, the hard-
ening and thermal recovery parameters, h and

r, given in Eqn. 10 are similar in form and

function to the hardening/recovery relation-

ships proposed and experimentally verified by

MITRA _ MCLEAN [12]. Here the stress de-
pendence of recovery, as defined by the prod-

uct h r, has an exponent of 3. This is in ac-

cordance with the 'natural' theory of creep

for thermally-assisted dislocation climb [13].
Our particular hardening and thermal recov-

ery parameters extrapolate the Mitra-McLean

results into the domain of exponential behav-

ior. The viscoplastic model of ROBINSON [14]

also employs the hardening/recovery concept

of Mitra and McLean, but in the evolution
equation for back stress.

In the viscoplastic model of MILLER [7], the
dynamic recovery parameter d was introduced

to provide a coupling between the back stress

and drag strength so that differences between

the monotonic and cyclic stress-strain curves
could be accounted for. This distinction be-

tween monotonic and cyclic behavior is a phe-

nomenon that CHABOCHE el al. [15] refer to
as the strain memory effect, but one that they

model in a completely different manner than

the approach used by Miller. Our particular

function for d given in Eqn. 10 differs from

Miller's in form, but not in purpose. In both of



thesemodels,d_s = 0 at steady state, thereby

enabling the viscoplastic models to reduce to
well-known creep models in closed form. In

our model, _ (not HBID is the parameter cho-
sen to account for the oscillatory changes in
of the internal state of the material during

cyclic loadings. The ratio b/y proportions this

coupling according to the relative strength ca-

pability of the back stress to yield strength.
Because there are no cyclic data available for

LiF-22%CaF2, this coupling effect is not con-

sidered in this paper.

The material constant y establishes, among

other things, the capability of a material to

cyclically harden. The greater the value of

y, the greater is this capability. An as-

sumed value for y is given in Table 1 for

LiF-22%CaF2 because of a lack of cyclic data.

The expression for b in Eqn. 11 (defining

that portion of the applied stress which is at-
tributed to the back stress under conditi,_,s

of steady state) is a direct consequence of thc
following hypothesis: it is the internal state
of stress that accounts for the difference b_-

tween 'natural' (with a stress exponent of 3,
cf Eqn. 8) and observed (where n _ 5, cf.

Eqn. 13) power-law creep behavior in class M
materials. This internal stress results from

a honeycomb-like dislocation structure com-

posed of hard cell walls of high dislocation den-

sity which surround soft cell interiors of rela-

tively low dislocation density [16]. The 'nat-

ural' theory of creep assumes a homogeneous
dislocation network. Notice that when n = 3

(as is the case for class A materials, which typ-
ically have no cellular dislocation structure),

the fraction of back stress to applied stress at

steady state becomes constant-valued; in par-

ticular,
K

b= l-y--_

Otherwise, b varies with material strength, for
which the yield strength Y is an appropriate
measure. It is this feature of the variable b that

100

75

5O

25

o Data ITheory

0
450 650 850 1050

T (K)

Figure 3: Yield strength (0.2% offset) of
LiF-22%CaF2. t = 2 x 10 -4 s -1. Data are

from RAJ _ WHITTENBERGER. [3].

distinguishes this viscoplastic model from the

previous ones developed by the authors [5, 17].

5 Applications

There are very few experimental data for

LiF-22%CaF2 that one can use to validate a

model such as the-one given above. About

the only data that are available, besides those

which appear in Fig. 2, are yield strength data.

Figure 3 presents the predictive capability of
our model, as it pertains to the yield strength.

The yield strength ay at 500 K, and the fact
that about 15% strain was required to attain
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steady-state in this test, were facts used to set

values for the material constants K and cl, re-

spectively. The model predictions for all other

temperatures are just that, predictions. The

agreement between theory and experiment is

quite good.

To demonstrate some of the capabilities

of our model, the response to the first few

cycles of a typical thermomechanical fatigue

(TMF) loading history are presented in Fig. 4.

Unfortunately, there are no experimental data

to substantiate this prediction one way or the
other. Nevertheless, the predicted shape of

this hysteresis loop is consistent with shapes

observed from similar experiments done on

metals [18]. In short, our model is capable of
representing the complexities of nonisothermal

material behavior while using temperature-
independent viscoplastic material constants.

6 Conclusions

A viscoplastic model has been proposed for

class M materials. This model has been ap-
plied to a LiF-22%CaF2 hypereutectic salt.
Features of this model include:

s Closed form reduction to creep theory un-
der steady-state conditions.

• Internal state variables account for the

difference in the stress dependence of 'nat-

ural' and observed creep behavior.

• Two internal state variables are em-

ployed.

1. The yield strength accounts for

isotropic hardening and softening ef-
fects.

2. The back str_ accounts for kine-

matic hardening and softening ef-
fects.

• These internal variablesevolve accord-

ing to the competitiveprocessesofstrain

hardening, and dynamic and thermal re-

covery.

• A Mitra-McLean hardening/recovery for-

mat is used in the evolution of yield

strength.

• DynamO(recovery of the yieid strength

accounts for monotonic/cyclic interaction

(or strain-memory) effects.

• Thermal recovery of the back stress is

taken to be implicit; thereby, simplifying
the structure and characterization proce-
dure of the model.



• Thestrainhardeningparameterfor back
stressis comparablewith the tangent
modulusin the Dafalias-Popovtwo-
surfacetheoryofplasticity.
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Appendix

Much of the development of our viscoplastic

model is predicated upon the assumption that

IIBII. = bllSll and Y. = YlISII (14)

where y is taken to be a constant, but not b. It
also makes use of the fact that the back stress

Bij is coaxial with the deviatoric stress Sij
under steady-state conditions (a direct conse-

quence of Eqns. 3 and 4, and in agreement with

experimental evidence [19]), and therefore one
can write

I1 11-- IIS- Bib, = IISII- IIBII. (15)

which is not valid, in general.

By definition, Bii = 0 at steady state, and
since R = 0 Eqn. 4 reduces to

1

D,, = IIBIt,,

Combining this result with Eqn. 14 leads

directly to the dynamic recovery parameter

given in Eqn. 9. Because D is a strength mea-

sure (it establishes the magnitude of the limit-

ing state of back stress), it is appropriate that

it depend on the yield strength and not on the
magnitude of back stress.

Likewise, 1} = 0 at steady-state by defini-

tion, and therefore

,',, = I1 "11-= o z.

where we make use of the self-imposed con-

straint that dj8 - 0 (satisfied by the fact that

¢,, = 0). Combining Eqns. 13 and 14 with this

result leads to the thermal recovery parameter

given in Eqn. 10.

Equating the transient Zener parameter of

Eqn. 8 with its steady-state counterpart given

in Eqn. 13 under steady-state conditions, and

using Eqns. 14 and 15, one obtains the rela-

tionship

,, [b + y = 1 - [_ sinh -1 sinh '*/3

(16)
which when written in terms of Y,, via Eqn. 14
results in Eqn. 11 for b. Here sinh -1 is the

arcsinh, whose equivalent expression

sinh-t(x) = In (z +

is a useful representation when writing FOR-
TRAN code.

A graphic representation of Eqn. 16 is pre-

sented in Fig. 5. In the domain of power-law

creep, Eqn. 16 reduces to a relationship that
(_ADEK [20] proposed and experimentally ver-

ified, where b and y were not distinguished one
from the other. In the domain of exponential

creep, Eqn. 16 implies that the fraction of in-

ternal stress (b + y)[[S[] to applied stress [[SI[
at steady state is nearly a constant. The ratio

K/C establishes this plateau, which suggests
an upper bound for y. As a rule of thumb, a

ratio of K/C _ 1/3 leads to an internal stress

that is between 40 and 50% of the applied

s t_s_t steady state, which-is c0nsistent with

experimental observations [21]. In this study,

the value of K was determined by correlating

yield strength data, and was found to agree
with this rule of thumb.
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Figure 5: Response of Eqn. 16, where values

for the power-law breakdown stress _rplb ------C,

the ultimate strength (rult and the creep ex-

ponent n pertain to LiF-22%CaF2. Plots for

two different values of K are displayed.
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